master
cynic 3 years ago
parent b25ca021a1
commit 41b3c9b8a6
  1. 12
      main.py

@ -6,7 +6,7 @@ import sklearn.linear_model
import sklearn.metrics import sklearn.metrics
import sklearn.model_selection import sklearn.model_selection
# chack args # check args
if "help" in argv: if "help" in argv:
print(f"""USAGE:\npython3 main.py""") print(f"""USAGE:\npython3 main.py""")
exit(-1) exit(-1)
@ -22,24 +22,24 @@ except FileNotFoundError:
data = pandas.read_csv("creditcard.csv") data = pandas.read_csv("creditcard.csv")
data['mean'] = data.mean(axis=1) data['mean'] = data.mean(axis=1)
# isolate fraud & legitimate sets # isolate fraudulent & legitimate sets
fraud_set = data.loc[data["Class"] == 1] fraud_set = data.loc[data["Class"] == 1]
legit_set = data.loc[data["Class"] == 0] legit_set = data.loc[data["Class"] == 0]
#get variables ready for training # get variables ready for training
x = data.loc[:, "V1":"V28"] x = data.loc[:, "V1":"V28"]
y = data["Class"] y = data["Class"]
xtrain, xtest, ytrain, ytest = sklearn.model_selection.train_test_split(x, y, random_state = 0) xtrain, xtest, ytrain, ytest = sklearn.model_selection.train_test_split(x, y, random_state = 0)
#train # train
classifier = sklearn.linear_model.SGDClassifier() classifier = sklearn.linear_model.SGDClassifier()
classifier.fit(xtrain, ytrain) classifier.fit(xtrain, ytrain)
#predict # predict
predictions = classifier.predict(xtest) predictions = classifier.predict(xtest)
#save # save
accuracy = sklearn.metrics.accuracy_score(ytest, predictions) accuracy = sklearn.metrics.accuracy_score(ytest, predictions)
save = input(f"accuracy: {accuracy}, save data to .csv? [y/n]") save = input(f"accuracy: {accuracy}, save data to .csv? [y/n]")
data["guess"] = classifier.predict(x).flatten() data["guess"] = classifier.predict(x).flatten()

Loading…
Cancel
Save