|
|
@ -6,7 +6,7 @@ import sklearn.linear_model |
|
|
|
import sklearn.metrics |
|
|
|
import sklearn.metrics |
|
|
|
import sklearn.model_selection |
|
|
|
import sklearn.model_selection |
|
|
|
|
|
|
|
|
|
|
|
# chack args |
|
|
|
# check args |
|
|
|
if "help" in argv: |
|
|
|
if "help" in argv: |
|
|
|
print(f"""USAGE:\npython3 main.py""") |
|
|
|
print(f"""USAGE:\npython3 main.py""") |
|
|
|
exit(-1) |
|
|
|
exit(-1) |
|
|
@ -22,7 +22,7 @@ except FileNotFoundError: |
|
|
|
data = pandas.read_csv("creditcard.csv") |
|
|
|
data = pandas.read_csv("creditcard.csv") |
|
|
|
data['mean'] = data.mean(axis=1) |
|
|
|
data['mean'] = data.mean(axis=1) |
|
|
|
|
|
|
|
|
|
|
|
# isolate fraud & legitimate sets |
|
|
|
# isolate fraudulent & legitimate sets |
|
|
|
fraud_set = data.loc[data["Class"] == 1] |
|
|
|
fraud_set = data.loc[data["Class"] == 1] |
|
|
|
legit_set = data.loc[data["Class"] == 0] |
|
|
|
legit_set = data.loc[data["Class"] == 0] |
|
|
|
|
|
|
|
|
|
|
|