|
|
@ -5,6 +5,7 @@ import sklearn |
|
|
|
import sklearn.linear_model |
|
|
|
import sklearn.linear_model |
|
|
|
import sklearn.metrics |
|
|
|
import sklearn.metrics |
|
|
|
import sklearn.model_selection |
|
|
|
import sklearn.model_selection |
|
|
|
|
|
|
|
import sklearn.utils |
|
|
|
|
|
|
|
|
|
|
|
# check args |
|
|
|
# check args |
|
|
|
if "help" in argv: |
|
|
|
if "help" in argv: |
|
|
@ -27,10 +28,10 @@ fraud_set = data.loc[data["Class"] == 1] |
|
|
|
legit_set = data.loc[data["Class"] == 0] |
|
|
|
legit_set = data.loc[data["Class"] == 0] |
|
|
|
|
|
|
|
|
|
|
|
# get variables ready for training |
|
|
|
# get variables ready for training |
|
|
|
x = data.loc[:, "V1":"V28"] |
|
|
|
x = sklearn.utils.shuffle(data.loc[:, "V1":"V28"]) |
|
|
|
y = data["Class"] |
|
|
|
y = sklearn.utils.shuffle(data["Class"]) |
|
|
|
|
|
|
|
|
|
|
|
xtrain, xtest, ytrain, ytest = sklearn.model_selection.train_test_split(x, y, random_state = 0) |
|
|
|
xtrain, xtest, ytrain, ytest = sklearn.model_selection.train_test_split(x, y) |
|
|
|
|
|
|
|
|
|
|
|
# train |
|
|
|
# train |
|
|
|
classifier = sklearn.linear_model.SGDClassifier() |
|
|
|
classifier = sklearn.linear_model.SGDClassifier() |
|
|
|