You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
fraud_detection/main_old.py

78 lines
2.6 KiB

import pandas, seaborn
from requests import get
from sys import argv, exit
# chack args
cmds = ["and", "max"]
if len(argv) < 2 or argv[1] not in cmds:
print(f"""USAGE:\npython3 main.py <{'|'.join(cmds)}>
max = guess fraudulent if the heuristic for the best column finds it
and = guess fraudulent if ALL the heuristics determined to be good find it""")
exit(-1)
# download dataset if it isn't already present (too large for github)
try: open("creditcard.csv").read()
except FileNotFoundError:
print("downloading dataset...")
txt = get("https://the.silly.computer/creditcard.csv").text
open("creditcard.csv", "w").write(txt)
# read dataset into dataframe
data = pandas.read_csv("creditcard.csv")
data['mean'] = data.mean(axis=1)
# isolate fraud & legitimate sets
fraud_set = data.loc[data["Class"] == 1]
legit_set = data.loc[data["Class"] == 0]
#find the best columns for determining fraud
good_heuristics = []
for col_name in fraud_set.columns:
fm = fraud_set[col_name].mean()
lm = legit_set[col_name].mean()
corr = 0
incorr = 0
for r in data.iterrows():
if abs(r[1][col_name] - fm) < abs(r[1][col_name] - lm):
if r[1]["Class"] == 1: corr += 1
else: incorr += 1
elif abs(r[1][col_name] - fm) > abs(r[1][col_name] - lm):
if r[1]["Class"] == 0: corr += 1
else: incorr += 1
print(col_name)
print(fm)
print(lm)
accuracy = corr/(corr+incorr)
print(accuracy)
if (accuracy > .95) and col_name != "Class":
print("good heuristic!")
good_heuristics.append({"name": col_name, "fraud_mean": fm, "legit_mean": lm, "accuracy": accuracy})
print("")
print(good_heuristics)
# create new dataframe with guesses based on found heuristics and chosen type (max = best column, and = all good columns must match)
guessed_class = []
best_heuristic = None
best_acc = 0
for h in good_heuristics:
if h["accuracy"] > best_acc:
best_acc = h["accuracy"]
best_heuristic = h
print(f"using heuristic: {best_heuristic['name']}")
for r in data.iterrows():
if argv[1] == "and":
bools = []
for h in good_heuristics:
bools.append(abs(r[1][h["name"]] - h["fraud_mean"]) < abs(r[1][h["name"]] - h["legit_mean"]))
fraud = all(bools)
guessed_class.append(1 if fraud else 0)
elif argv[1] == "max":
good = True
if abs(r[1][best_heuristic["name"]] - best_heuristic["fraud_mean"]) < abs(r[1][best_heuristic["name"]] - best_heuristic["legit_mean"]):
good = False
guessed_class.append(0 if good else 1)
data["guess"] = guessed_class
print(data.head(10))
data.to_csv("woo.csv")